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Abstract. General discussion of the aggregation kinetics for the wide class of aggregation 
models in which cluster growth occurs by bonding reactions between movable monomers 
and immovable clusters is presented. The study is carried out in terms of Smaluchowrki's 
r?!e qc?!innr. We !TPLC s g~nera! hoEogeceour P?IP where !hp mw~mer-clzstec rezc!inn 
rates vary as k', with the cluster size k For models with OC y < I without a source we 
find that systems evolve to a final 'frozen' state. Evolution behaviour of the system appears 
to be non-scaling, but the deviation from a frozen state has a self-similar form. For the 
systems with a source, we have found that the solution has a scaling form in the most 
impanant part of the duster-size distribution except for an asymptotically ignorable tail. 
We also carried out the analysis of the structure of the tail and of the thin boundary layer 
separating the scaling and non-scaling tail regions. The qualitative explanation of nan- 
scaling and sourceinduced scaling behaviour may be made in terms of 'internal- time 
inherent far the models of these types. 

1. Introduction 

Aggiiga:ion is an iiiiveisib!e physics! p;ociss ii; a number of basic :nits 
(monomers) stick together to build clusters (polymers). One of the main problems of 
aggregation kinetics is to describe the time evolution of cluster-size distribution (for 
a review see Drake 1972 or Ernst 1986). As a rule, the aggregation process is carried 
out in two stages. The first stage is a diffusive one: the clusters diffuse in a medium 
to meet one another, whereas at the second stage the bonding reaction occurs. In recent 
x m i r ~  ,--. ", two l i m i t i n o  .......... mnrt-1~ " fnr .-. i r reverq ih le  aggrcgatio: hive been intr~duced. These 
are diffusion-limited cluster-cluster (CLCL) aggregation (Meakin 1983, Kolb era/ 1983) 
and reaction-limited CLCL aggregation (Jullien and Kolb 1984, Kolb and Jullien 1984). 
The kinetics of such models was first discussed by Botet and Jullien (1984). A compre- 
hensive review of this rapidly developing field is given by Meakin (1988). In a variety 
of aggregation processes the diffusion stage plays the crucial role. It was shown both 
ana!y!ica!!y and numerically (see e.2. Kolb 1984, Meakin er a/ 1985) that the ageregation 
kinetics is strongly influenced by the cluster-size dependence of the diffusion 
coefficients. 

The aim of our paper is to carry out a detailed analysis of the case when the 
diffusion coefficients of clusters are negligibly small (equal to zero in our model) 
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compared with the diffusion coefficient of monomers. As we shall show, the kinetic 
behaviour in these systems drastically changes. Moreover, we have established that 
the evolution in systems with a source of monomers and source-free systems is 
principally different. 

To describe the aggregation kinetics Smoluchowski equations are used 
(Smoluchowski 1917): 

N V Brillianrou and P L Krapiusky 

Here C, is the concentration of clusters containing k monomer units (k-mers, 
k = 1 , 2 , .  . .), K,, the rate constants for the reaction between i- and j-mers, producing 
(i+j)-mer. The gain and loss terms in the right-hand side of (1) describe the formation 
of k-mers of smaller clusters and the loss of k-mers due to their reaction with other 
monomers and clusters. 

In the case of interest the cluster growth occurs only by means of addition of 
movable monomers to immovable clusters; cluster-cluster reactions are impossible in 
such systems. For this reason, the aggregation models of this type were called ‘addition 
models’ (Hendricks and Ernst 1984). For these models K,=O when i >  1 and j >  1 
and the rate kemel may be written as follows: 

K ,  = SiSj, + $Si,. (2)  

Equation (2) means that the K ,  matrix is ‘hook-shaped’ because its non-zero elements 
are only in the first column and first row. The kinetic equations (1) now attain the 
simple form 

dCJdt  =-S,C:-C,x SjC,+ Q (3) 
i 

dC,/dr= C,(Sk-lCk-,-SkCk) k a 2 .  

Here the source term Q is added to account for the possible external source of 
monomers in a system. The kinetic equations of the ‘addition’ type (3) arise in a variety 
of problems. for example, an aggregation of point defects in solids is governed by (3) 
(Brilliantov and Krapivksy 1989). In this case the diffusion coefficients Dh of clusters, 
containing k point defects, are negligible compared with the diffusion coefficient for 
point defects D, (i.e. Dk<< D, for k >  1). Therefore, the rate matrix K,, given by the 
Smoluchowski’s formula 

K ,  = 4 r ( R , + R , ) ( D j +  0,) (4) 

S; = 4 7 i ( R , + R j ) D , .  ( 5 )  

(here R, is the radius of j-mer), converts into the hook form (2) with 

Another example is an aggregation process caused by hydrolysis (Matsoukas and 
Gulary 1989). Hydrolysis produces the active monomers which subsequently react with 
either active monomers or polymeric species, containing i-monomers and producing 
( i+l)-mers .  There are three irreversible steps in such a process: 

CO+ C, (hydrolysis) 

C,+C,+C,+, (growth). 

C, + C, + C, (nucleation) 
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The corresponding rate equations also have the 'addition' form: 

CO = -s,c, 
c1 = s,c,- s,c:- c, $C; (6) 

c, = cl(sk&lc,-, -S,C,) k 2 2 .  

In order to proceed with the solution of (3) and (6) we should choose a functional 
dependence of the growth reaction rate coefficients S,  on the cluster size k. It is natural 
to assume a power-law dependence of the form S,Oc k'. This choice includes most 
physical situations. Moreover, we expect that the exponent y lies in the interval 
O S  y S  1. The reason is that the number of active sites on a cluster cannot increase 
faster than its size, i.e. that S , / k  is bounded as k + m .  The constant kernel ( y = O )  
corresponds to a growth process with the rate independent of the particle size. Such 
is the case of the linear polymer growth (fixed number of reaction sites per particle). 
The proportional kernel ( y  = 1 ) describes a process where all the monomers within a 
cluster (or a fixed fraction thereof) are the potential sites for growth. Real cases lie in 
between. As will be shown below, the parameter y is the only one which defines the 
kinetic behaviour of the systems in a scaling region. 

The exact value of parameter y may be established on the basis of microscopic 
consideration of aggregation processes. However, some conclusions may be deduced 
for the most interesting cases of reaction- and diffusion-limited growth. In a reaction- 
limited process, the growth rate is limited by the bonding reactions. They are propor- 
tional to the number of possible bonding configurations between the monomer and 
cluster. So the growth kernel scales as the cluster surface area. Thus, for compact 
clusters in d-dimensional space, y = ( d  - I ) /d  whereas for fractal clusters 1 > y >  
( d - l ) / d .  

For diffusion-limited processes, Smoluchowski's formula (4) gives 

S, =47rD,(R,+R,) -  R k -  k'ldl a t k x - I .  (7)  

This means that y = l/d,where d,is the (fractal) dimension ofclusters. For example, 
y = f  for compact 3~ clusters, y = $  for compact disk-shaped clusters and y=O.37 for 
fractal clusters arising in a diffusion-limited growth (Witten and Sander 1981, Meaking 
1988). Note that real diffusion-limited aggregation processes are much more complex 
and can involve additional factors such as reorganization after initial bonding step, 
long-range forces, rotational diffusion, etc. Some attempts have already been made to 
include some of these processes in simple aggregation models, see e.g. Meakin and 
Jullien (1985), Kolb (1986), Jullien (1985) and Meakin (1984, 1985). These additional 
factors may change fractal dimensionality of the aggregates. Thus, the y exponent can 
be varied depending on the details of aggregation process. 

It. is interesting to note that the aggregation models of addition type are closely 
related to the diffusion-limited CLCL aggregation models with cluster diffusion 
coefficient varying as k" at the limit a +-CO ( k  is the number of monomers in a 
cluster). The addition models describe the first stage (with shortest timescale) for the 
latter processes when only monomers are regarded as movable. When monomers are 
exhausted the second stage of the aggregation process starts. In the second stage dimers 
react with dimers and other clusters with k >  2. The timescale of the second stage is 
much greater than that of the first one, hut aggregation kinetics is just the same with 
minor changes: D, + 4, C ,  + C, and with initial conditions determined by the final 
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cluster-size distribution Ck( f + m) of the first stage of aggregation. When the second 
stage is completed the third stage starts, etc. So every stage of this hierarchical 
aggregation process may he regarded in terms of the addition model. The opposite 
case, LI + +m, is also interesting (see e.g. Meakin et a1 1985). 

The outline of this paper is as follows. In section 2, we consider the addition models 
without the source. For the constant kernel and proportional kernel, the exact results 
have been found, while for the intermediate case 0 < y < 1 we have obtained asymptotic 
results in the limit t + m  and k + m .  

We have shown that the solution of Smoluchowski's system with a hook-shaped 
rate matrix is non-scaling. This is in sharp contrast with the scaling behaviour of the 
most known solutions for the power-law kernels for an ordinary rate matrix with 
non-zero elements. 

To complete the analysis, the unphysical case y > 1 has also been investigated. It 
was established that gelation occurs in an infinitesimal time interval. 

In section 3, the addition models with a source are considered. Surprisingly, the 
solutions we have found in the presence of a source fall into a scaling form. Thus we 
shall call this type of scaling a source-induced one. 

To have a deeper insight into the kinetic behaviour of the system we introduce the 
concept of internal time. We show that the finiteness of the internal time is closely 
related to  the absence of scaling in the system. 

N V Brillinntoo and P L Krapivsky 

In section 4, we summarize our results and draw some conclusions. 

2. Addition models without a source 

The addition model with reaction rate matrix (2) and homogeneous reaction constants 
S, = AkY hereafter will be referred to as the y-hook model. Samsel and Perelson (1982) 
and Hendricks and Ernst (1984) have shown that 0-hook and 1-hook models are 
analytically solvable. We briefly sketch their results and concentrate on asymptotic 
behaviours (at k + m  and f + m )  for these and for more general y-hook models. In 
this section, we shall use the non-dimensional time f measured in units of (ACJ',  
where CO is the unit concentration. 

2.1. 0-hook model 

Defining the rescaled time variable 

T =  dt 'C , ( f ' )  I"? 
we linearize the rate equations (3) 

Here N = 2, C, IS the total number o i  clusters. it is easy to soive ( 9 0 )  and then aii 
(9b), recurrently. For the monodisperse initial data, Ck(0) = we find 

T k - 1  

Ck(T)=[--T*] exp(-T) k r l .  
( k - l ) !  k!  
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Combining (8) and ( lo) ,  one can easily find the relation between the ‘physical’ time 
i and the ‘internal’ time T: 

exp(-T’) 
( I -T’)  

Note that whereas f increases on an infinite time interval, 0 < t < m, T increases 

The asymptotic cluster-size distribution at f + 00 is the following: 
on a finite time interval, 0 < T < T,= 1. 

In many recent studies, the scaling behaviour 

C , ( f ) = S - * @ ( k / S )  s- i’ (13) 

had been observed in the scaling regime 

k - m  1” k / S  = finite (14) 

(for a review see Ernst 1986). The solutions of the 0-hook model do  not belong to the 
scaling class. 

One can give a qualitative explanation of this fact in terms of previously introduced 
internal time. This time is a physically inherent ‘time’ of the model and whereas it 
changes in a finite interval O <  T <  Tr, the scaling kinetic behaviour has no ‘time’ to 
develop. The system therefore falls into the final state (12), which one can call the 
‘frozen’ state. More careful analysis shows, however, that the deviation form (non- 
universal) frozen state has a self-similar form. Precisely, from (10) and (12) we find 
the asymptotic solution 

k + m  T +  Tr k( Tr- T) = x = finite 

Ck/Cdm) + exp(-Ax) A = I  
(15) 

Similar results may be found for the 0-hook hydrolysis model. Omitting the details 
of straightforward calculations we give the final results: 

C,+(N,-N,T)exp(-T)  t + m  (16) 

N - N , e x p ( - T )  1-m. (18) 

Here No and N, are some non-universal constants depending on initial conditions, T 
is the internal time: 

Again we see that the internal time changes in a finite interval O <  T <  Tr= N,/N, 
and that the deviation from freezing state has the self-similar form (15) with A = T ; ’ .  
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2.2. 1-hook model 

Now we turn to the 1-hook model: 

N V Brilliantoo and P L Krapivsky 

k 3 2 .  (206) - (k-  l)Ck-l - kCk d c k  

d T  
_- 

Here M = X j  jCj is the total mass. Introducing the generating function 

g = 1 Cj( T) exp(j2) (21) 

we deduce from (18) and (19) 

or 

where 

c =  dZ(e ' - l ) - '=log(l-eC).  (24) I 
One can easily find an exact solution of (23) with arbitrary initial data. For the 

monodisperse ones, we obtain 

or 

Ck( T) = eCT(l -e-r)k-'- K ' ( 1  (26) 

In terms of 'physical' time we have 

ck(f) =[(I  -e-')k-' - k-'(l- e -' ) ](2-e-')-*. (27) 

As f increases from zero to infinity, the internal time T =log(2-e'-') increases on 
the finite time interval, 0 c: T < Tr, with Tr= log 2. The deviation from non-universal 
frozen state ( Ck(m) = (1 - k-')2-* for the monodisperse initial data) again may be 
recast into the scaling form (15) with A = 1. 

Similar results can be found for the 1-hook model with hydrolysis. We have a 
simple relation for C,,(t): 

k o = - a c o  C,=exp(-at). (28) 

Here a =So is the reaction rate of hydrolysis. The monomer concentration may be 
found from the second equation of the system (6) 

(29) Cl + C,(  C ,  + MO+ 1 -e-"') = a e-'" 
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where MO is the initial mass, MO = 1; jC,(O), and the concentrations of k-mers may be 
found by means of simple recursion 

c k + , ( T ) = k  j o r d u C l ( T - u )  exp(-Zu)[ l -e~p(-u)]~-l .  (30) 

Equations (29) and (30) may be treated analytically for particular initial conditions: 
Ck(0) = 0 at k > 1, C,(O) = 2a - 1. One obtains in this case for the concentration of 
monomers: 

C, = exp(-at)+A(t) 

where the function A(t)  is defined as 

A ( t ) = 2 ( a - l ) e x p [ - 2 a t - ( l - e ~ " ' ) / a ]  

The simplest solution corresponds to a = 1: 

C,(r) =exp(-t) = 1 - T. (32) 

We see that the internal time again changes in a finite time interval, O <  T <  Tr= 1. 
For the asymptotic behaviour we obtain 

Ck+,=c,(0) e-2r(1-e-T)k k >> 1 (33) 

and once more deduce a self-similar form (15) with A = [exp( TJ - 1]-' for the deviation 
from the frozen state distribution. 

2.3. y-hook model with 0 < y < 1 

In the case of intermediate y, O <  y < 1, we investigate the system of equations 

- ( k -  l)yCk_l - kYCk k2.2. (34b) 
d ck 
d T  
_- 

For the monodisperse initial data we find a lower and upper bound for the functions 
Ck and M,. The equation for the momentum function M, may be derived from (34): 

m 
-7 d M  --MY+ - 1 Ckk'[(k+l)Y-k'] 
dT k = l  

First, we find a lower bound for My( T): 

(35) 

and then an upper bound for C,( T): 

From (37) it follows that the internal time changes in a finite time interval O <  T <  Tr 
and we have an upper bound for Tr, T+ 1. 
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Using the obvious inequality 

( k +  k Y +  y k 7 - ' s  k'+ y 

we derive an upper bound for M,(T) 

E 7 S  -(1- y ) ~ ,  M, S exp[-(I - y)T] (39) d T  

and then a lower bound for C,(  T) 

Further, from (40) we deduce a lower bound for Tr, T + ( l / y ) l o g ( l +  y ) ,  which 
coincides with the exact results 'Ir= 1 and Tr= log 2 in the limiting cases y = 0 and 
y = 1, respectively. 

Using (34b) one finds the relation 

Ck+,(T)  = k' d u  C, (T-  U )  exp[-(k+ I)yu]. (41) 

We suppose that the deviation from frozen state has a self-similar form (15) again. 

IoT 
Under this assumption one can estimate a frozen state for large k: 

Ck+,(W)-k 'Ck(W) du e x p [ - k u - ( k + l ) Y ~ ]  

at k > > l .  (42) 

Using this result together with a large-k approximation, Il:=,[l- nY-I]CCexp(-kY/y), 
we obtain 

I 
=Ck(m)kT-'(1-k7- ')  

Up to an overall numerical factor this asymptotic solution for the y-hook model, 
0 < y < 1, is independent of the initial conditions. Similar results may be found for the 
y-hook model with hydrolysis. 

2.4. Gelation in the hook models with y>  1 

It is well known that in some aggregation processes gelation take place. Mathematically, 
the sol-gel transition is manifested by violation of the mass-conservation law after 
some time interval f, (gelation time). Physically, it means that a huge cluster, spreading 
throughout the system is created at t I,. The gelation kinetics critically depends on 
the functional form of the rate kernel. From the preceding analysis it follows that 
gelation for the hook kernels may occur only when y > 1. Therefore the question arises: 
does gelation occur on our model and what is the value of the time I,? The second 
question is a non-trivial one accounting the recent speculations of various authors who 
stated that for certain forms of the reaction kernels gelation may take place instan- 
taneously. Analytical arguments supporting this view have been given by Hendricks 
et a1 (1982) and by Ziff (1984). Different evidence, supporting the possible occurrence 
of an instantaneous gelation transition, comes from Monte Carlo simulations 
(Domilovskii ef  a1 1978, Spouge 1985). Recently van Dongen (1987) confirmed the 
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occurrence of a gelation transition within infinitesimal time for some homogeneous 
reaction kernels. 

In our hook model with y > 1 instantaneous gelation indeed takes place (i.e. fp = 0). 
We have found the structure of post-gel solution: C,( T )  =O; C,( T )  = C,(O), for all 
k > 1 and t > 0. These results were found following the lines of van Dongen (1987). 

3. Addition models with a source 

A source-enhanced cluster-cluster aggregation can be observed in various natural 
phenomena such as atmospheric aerosols (Klett 1975, Friedlander 1977, White 1982, 
Crump and Seinfeld 19821, star formation (Field and Saslaw 1965), the formation of 
inter-stellar dust grains (Salpeter 1977, Hayakdwa and Hayakawa 1988), vapour- 
deposited thin films (Family and Meakin 1989), the diffusion-limited growth of surface 
structures (Brilliantov et al 1989), diffusion-controlled deposition (Racz and Vicsek 
1983, Matsushita and Meaking 1988) and radiation-induced segregation (Bourgoin 
and Corbett 1978, Corbett 1979). These systems have been investigated theoretically 
in the mean-field approximation, i.e. using Smoluchowski’s coagulation equation, by 
Kayakawa (1987); numerically by Vicsek et a1 (1985), Racz (1985a), Meakin et a1 
(1985) and Hayakawa et al (1987); and exactly in I D  (Racz 1985b, Takayasu ef al 
1988, Takayasu 1989, Takayasu and Takayasu 1989, Thompson 1989, Doering and 
ben-Avraham 1989, Cheng el  al 1989, Meakin 1989). 

In many of these systems the increase in the total mass of cluster concentration is 
balanced by the continual coalescence of clusters. The concentration of clusters of any 
fixed mass reaches a steady stare and the cluster-mass distribution follows power law 
with infinite variance. 

In this section we discuss the hook modeis with a source. A s  we shaii show, there 
are no stationary states in these models. Furthermore, the kinetic behaviour at long 
time exhibits rather peculiar scaling. This is in sharp contrast with the kinetic behaviour 
of usual aggregation models with a source. 

7 1 0-hnnk ..I_.. m n h l  

For a 0-hook model with a source, we obtain the following rate equations: 

d N  
dr (44a)  _- -1-CIN - I - C , ( C , + N )  dC, -- 

d t  

Here the non-dimensional time t is measured in units of (AQ)-”2 and the non- 
dimensional concentrations in units of (Q/A)”*, where Q represents the rate of 
monomer production by an external source. 

Equations (440)  yield the following closed equation for C,(t):  

c,+c:/c, + c , / c , + 2 c , c ,  + c: = o  (45) 

which can be used to obtain the asymptotic decay 
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Combining the definition of the internal time (8) and the asymptotic solution (46) one 
finds the relation between the physical and internal times: 

N V Brillianfou and P L Krapivsky 

T-* (1/2)(3t)2/3 at 1'00 (47) 

i.e. C,( T) + (2T)-"2 at f -* m. Note that the internal time now varies in an infinite time 
interval, O <  T<m.  This contrasts with the behaviour in the hook models without a 
source and indicates that scaling behaviour may be expected. 

To explain the behaviour of the solution at k >> I ,  we replace the difference operator 
on the right-hand side of (44b) by a differential operator and solve the resultant wave 
equation 

This result may be derived more rigorously. Using a recursive method to solve 
(446), we obtain 

l T  
C k + 2 ( T ) = ~ j o  duC,(T-u)u 'exp(-u) .  (49) 

First, we consider a behaviour of the exact solution (49) in the scaling region 

T+CC k + m  x = k / T = f i x <  I .  (50) 

One can estimate the integral (49) by the Laplace method which yields 

C,+,(T)=-exp(k log k - k )  du C , ( T - k + u )  exp(-u2/2k)=C,(T-k).  (51) 

This result agrees with the earlier result (48). 

m 1 

k! I-- 
Second, we consider a behaviour of the solution (49) in the region 

k + m  T-*m and (k-T) /T<< 1. (52) 

A simple analysis shows that very rapid decrease of the function C,(T) occurs in a 
'layer' of order -TI/*. Therefore it is natural to introduce the 'layer' variable: 

k - T  
Y =T1/2. 

Ck( T )  == (2T)'/4f(Y) 

Then we transform (49) into the following self-similar expression: 

(53) 

In the last region x >  I ,  a mai,n contribution to the integral (49) is accumulated 
near the upper limit: 

1 
k !  

Ck(T)=-Tkexp(-T)F(x)  

du C,( T -  U )  exp[-u(x- l ) ]  x = k / T .  ( 5 5 )  
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Summing all these results, we finally arrive at the expression 

(2 T)-’/’( 1 - x)-’l2 a t x < 1  x = k / T  
C k (  T )  = (2 T)‘”4f (Y)  a t x - 1  k =  T - ( 2 T ) 1 ’ 2 y  (56) i T“’ exp(- T ) [ ( k  - 2) ! ] - ’ F ( x )  a t x z l .  

Thus we see that the solution has the scaling form at x <  1, the self-similar form 
at x = 1 and --4 < y < CO and the non-scaling form at x > 1, with non-universal factor 

is rather peculiar. Similar results have also been found for the 0-hook model with 
hydrolysis. 

F ( x )  dependixlg ox ixitk! cocditiocs. sc “ e  ccnc!i;de :hat :he behs:.i=i;; ofthis --ode! 

3.2. 1-hook model 

Now we turn to 1-hook model with a source, which is described by the following rate 
equations: 

( k -  l )Ck-l-  kC, k z 2 .  (576) 
d ck 
dT 
-= 

The mass conservation gives M = MO+ t, i.e. (57a) is the well known Riccati 
equation. It is easy to check that C ,  =(MO+[)-’ is the particular solution of (57a). 
Consequently, one can construct an exact solution with an arbitrary initial condition 
on C,(O). 

To proceed further we use the method of generating functions and obtain the 
equation 

dg/dT= (exp(z)-l)dg/dz+C,( T) exp(2z) ( 5 8 )  
for the generating function 

m 

g(T,  z ) =  1 exp(kz). (59) 
X = Z  

Solving ( 5 8 )  yields 

g =  (,’dT, C,(  TI)[ 1 -exp( T- T , + 5 ) ] - *  

where 6 is given by (24). Expanding (60) we obtain the exact solution 

C , ( T ) = ( k -  1) loT du C , ( T - U )  exp(-2u)[l -exp(-u)lk-’. (61) 

In the scaling region 

k - t m  T+W x = k exp(-T) = fix 

we come to the scaling-like form of (61): 

Ck( T)=exp(-T)@(x) 

@(x) = x  lomdu C , ( u )  exp(2u-x e”) .  
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Here C ,  is the solution of the Riccati equation (57a) written in terms of the internal 
time T. When x<< 1 (63) yields a true scaling behaviour 

ck(l)=l/l at k << t. (64) 
In contrast, at moderate x 2 1 (i.e. at k 2 1) @(x) crucially depends on the initial 
condition C,(O). Such a non-universality becomes especially visible at x >> 1 where one 
can find 
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@(x)= C,(O) exp(-x) when C,(O)>O (650) 

@(x)= (?r/2x)’/* exp(-x) when C,(O)=O. (656) 
In closing this subsection we note that for the simplest case C,(O) = 1 we succeed in 
finding the exact solution 

(66) 
Now we turn to a general case of a y-hook model with a source. We have observed 

three different types of kinetic behaviour in the regions 0 < y <+, f <  y < 1 and y = I .  
In the following subsections we present these results. 

and 

Ck( t )  = t k - ’ / (  1 + f ) k .  

3.3. y-hook models with O < y < t  

The rate equations for the y-hook model with a source are the following: 
m 

- 1 - C , ( C , + M , )  M y =  1 k’C, dCi _- 
d T  k + I  

As was demonstrated above, the asymptotic decay of the functions C k ( t )  have the 
power-law form C k ( f ) ~ t - p  at t+m, where p = f  for y = O  and p = 1  for y = l  (see 
(46) and (64)). Therefore it is natural to assume that the solution for an arbitrary y, 
O <  y < 1, has the same form with a parameter p in the interval f <  p < 1. For p < 1 
we find that dCk/dt<< C,Ck as t + m  and the quantities dCk/d t  can be neglected in 
the first approximation. As a result we obtain from (67) the following asymptotic 
relations for sufficiently small k: 

C,(t)+Bk-’t-P r(t)+ P I B  (68) 

To determine the constants B and p, we shall use the internal time T again. In 
where r(f)= M y ( t ) .  

terms of T we rewrite (68) as follows: 
T + B ( l - p ) -  I t 1-0 

r(o + { c m r l .  

( J / J T + J / J K ) ( k ’ C k )  = O  (70) 

Ck( T )  -+ ( 1  - p ) - p / ( l ~ p l T - p / ( i - p ) k - ~  (69) 

To find the cluster-mass distribution we write the kth rate equation (67) in the 
‘wave’ form 
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where we have rescaled the index variable 

K = k'- ' /( l-  y) .  

Solving (70) yields 

C k ( T ) =  k-'f(T-K). 

Combining (69) and (72) we find the function f and finally obtain 

Ck(T)=B!/(l-Dl(l - p ) - o / ( I - o ) (  T-K)-o/"-P)k-T (73) 

k + m  t + m  x = K /  T = fix < 1. (74) 

This scaling result is valid in the scaling region 

Substituting (73 )  into the expression r( T )  = My(  T) and replacing the sum by the 
integral one finds 

T ( T ) =  dkk'Ck(T) I:' 
The integral (75) converges for p <$, In this region (75) becomes 

Comparing this result with the expression for T ( T )  in (69), we obtain 

p = ( 3 - 2 y ) - '  (77a) 

which indicates that a self-consistency condition, p < f ,  imposes a restriction on the 
parameter y, viz O <  y < i .  We also present our results for the moment function in this 
interval of y :  

(78) 

Rigorously speaking, the solution (73) is valid only in the region ( k  + a, T +  a, 
x < 1). Nevertheless, the results are valid asymptotically because the functions Ck( T) 
decrease very rapidly when x > 1 and do not contribute to the integral (75) significantly. 
To describe the details of the behaviour of Ck( T )  in the vicinity of k = T where Ck( T) 
diverges in the continuum approximation (70), we would keep the high-order terms 
in the expansion of the difference operator in the right-hand side of (676). We have 
found that the 'wavefront' of the cluster-size distribution located at x = 1 has a 
self-similar form: 

x = l  (79) Ck( T )  = ~ - ( l - z ' l / " ' - 2 Y l 2 '  y = ( K  - ~ ) ~ - ( l - 2 M - z Y l  f ( Y  1 
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with some non-singular function f ( y ) .  Note that the dependence C k ( T )  has a sharp 
peak as for the 0-hook model. The qualitative dependence of cluster concentration C, 
versus cluster size k for T >> 1 and k >> 1 is presented in figure I .  

N V Brilliantoo and P L Krapiusky 

3.4. Hook models with y >  f 
In  the case y 2; the integral in (75)  includes a non-physical divergence at the upper 
limit. This is related to the use of the divergent expression (73) for Ck( T )  in the region 
T-K+O.  As we have shown for the case O <  y < $ ,  in this 'wavefront' region the 
solution converts into a non-singular form. Since we do  not know the precise behaviour 
of Ck( T) in this region, we can avoid this difficulty by introducing a cut-off in the 
upper limit of the integral (75). For y Sf this does not modify the final result, whereas 
an unknown constant appears for y >; without modifications of the time dependence. 
Estimating the integral with the cut-off at the upper limit and comparing the result 
with (69) for r( T), we find that in the interval y < 1 the following relation for the 
exponent p holds: p = y. Therefore at t +  M we obtain 

Tcc i'-' (80) 

The reasoning becomes rather more complicated for y =;. Assume that Ct( T) = 

C k ( T ) x  k - Y T - Y / ( ' - Y )  

and for x s  1 ( x =  k / T )  one can use the expressions (71) and (72) again. 

f( T). Then one finds 

w)={cm- '  @ l a )  

C k ( T ) = k - ' 1 2 f ( T - K )  (816) 

where K = 2k'I2. We shall seek the functionf(x) in the formf(x)  =[b(x)x]-l treating 
b(x) as a slowly varying function. This choice of the function f is prescribed by the 

131 

k 

Figure 1. Qualitative dependence of cluster concentrations C, versus duster size k for 
T>,l  and k > , l  (T=internal time, 0 4 y b i ) .  Here k,,,=[(l-y)T]"i'-r', k,;.= 
k,,,[Zy/(Zy+ l)]LJ"-71. There are three different regions an the cluster-size distribution: 
( I )  scaling region which contains the main part of the cluster distribution; (2)  sharp 
self-similar peak centred at k m S x ,  with the width =T"-'"/"-i"; ( 3 )  non-scaling front. 
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form of the solution (73). In the new notation we can write T ( T )  as follows: 

I‘(T)=- ‘Iom dx--- ( T - x ) - T I ’  dx l j r  - d x  
2 xb(x) 2 ,, xb(x) 2 b(x) 

We assume that the second term on the right-hand side of (82) can be neglected at 
T>> 1 compared with the first term. Using (810) we therefore have 

Differentiating this equation and then solving the resultant equation we obtain 

b( T) = (log T)”2.  (84) 

The validity of our assumption about the respective values of the terms in the 
left-hand side of (82) can now be verified by direct calculations. When b(x) is known, 
one can determine all the relevant quantities: 

C, (T)=  k-”2(log T)-”*T-’  at k<< T 

T=21’/2(2log f ) ’ /4  at f+m. 

In terms of the physical time t we have 

C , ( f )  = k-’/’(log t ) - ” 4 t - 1 / 2  at k<< t 

M,(f)= f“(21og t ) ( ’ - “ ) / 2  at t + m  

It should be noted that the relations (85) and (86) hold up to terms of the order 
of log(log f)/log f, i.e. the solutions tend to the asymptotic expressions extremely slowly 
at y = t .  

In closing the section we sum the results for y-hook models. In the scaling region 
T +  m, k + 00 and x = k j  T = fix, the scaling behaviour is observed at x < 1, i.e. 

(87) 
k 
t 1 ’  

x = -  C,( t )  cc k-7f-o@( x)  

Here the scaling exponents are 

and 

2(3-2y)-’ a t o s  y ~ f  
1 a t t < y < l  

The scaling function is given by the expression 

Note that the values y =i and y = 1 play the role of critical points in the hook models 
which separate the different types of kinetic behaviours. At these points novel and 
rather unexpected behaviours are observed, viz log-correction factors for y = f and 
stretched wavefront for ‘pre-gel’ model y = 1. 
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4. Summary 

We have studied aggregation kinetics of addition models. These models describe the 
aggregation processes when the clusters are immovable whereas the monomers move 
diffusively. Kinetics of these models was investigated on the basis of the rate equations. 
This is an approximation of a mean-field type because it ignores the spatial fluctuations 
of the species concentrations. 

The rate kernel matrix for addition models have a hook-shaped form. We have 
considered the power-law dependence of the rate constants. We observed that the 
kinetic behaviour crucially depends on the presence of a source in the system and on 
the power exponent y of the rate constants. 

For unphysical models with y > 1, instantaneous gelation occurs. For models with 
0 s  y G  1, we found that in the systems without a source an asymptotic frozen state is 
achieved as time tends to infinity. The approach to a frozen state appears to be 
non-scaling. However, the deviation from a frozen state has a self-similar form. This 
contrasts with kinetic behaviours of most of the previously studied aggregation models 
with homogeneous kernels where scaling behaviour was observed. 

For the systems with a source, we found that the solution has a scaling form in the 
most important part of the cluster-size distribution except for an asymptotically ignor- 
able tail. We also carried out analysis of the tail structure and the thin boundary layer 
separating the scaling and non-scaling tail regions. Overall cluster-size distribution 
proves to be peak-shaped. We have estimated the location and width of the peak. 

Our analysis has shown that two values of the power exponent y, y = f  and y =  I ,  
are somewhat critical points in the hook models. These points separate the regions 
with different kinetic behaviours. For the pre-gel point y = 1, the stretched wavefront 
of cluster-size distribution has been observed, and for y = f ,  we have found rather 
subtle behaviour with the logarithmic corrections to the usual power-law behaviour. 

The established properties of the whole class of hook models may be qualitatively 
explained in terms of the internal time which is physically inherent for such models. 
For the systems without a source, it varies in a finite time interval. So the scaling has 
not time to develop. In contrast, in the systems with a source the internal time varies 
in an infinite time interval, and the scaling, although rather peculiar, does develop. 

N V Brilliantou and P L Krapiusky 
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